Midterm 2 Review Questions

There will be seven multiple-choice questions and three work-out problems in Midterm 2.
For a review of material about the concepts covered in Midterm 2, please refer to the pdf named "Formula sheet Midterm $2^{\prime \prime}$ in the content folder. Below are some selected questions from the past final exams. You can find more exercises and answers from the past exam archive.

1. Spring 2019: \#13.
2. Spring 2019: \#16.
3. Spring 2019: \#18.
4. Spring 2018: \#11.
5. Spring 2018: \#13.
6. Spring 2018: \#20.

- Related question: Fall 2018 \#18 from MA266

7. Spring 2017: \#3.
8. Fall 2019: \#14.
9. Fall 2018: \#13.
10. Fall 2012: \#23.

We list the above questions here for convenience. The complete notes for solving these questions will be posted on Thursday, March 31.

1. Spring 2019: \#13.

Keywords: eigenvalue, invertible, diagonalizable.
Which of the following statements are true?
(i) If λ is an eigenvalue for A, then $-\lambda$ is an eigenvalue for $-A$.
(ii) If zero is an eigenvalue of A, then A is not invertible.
(iii) If an $n \times n$ matrix A is diagonalizable, then A has n distinct eigenvalues.
(iv) Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$, then A is both invertible and diagonalizable.
A. (i) and (ii) only
B. (i) and (iii) only
C. (i), (ii) and (iii) only
D. (i), (ii) and(iv) only
(1) True. $A \vec{v}=\lambda \vec{v} \Rightarrow-A \vec{v}=-\lambda \vec{v}$

In general, $A \vec{v}=\lambda \vec{v} \Rightarrow k A \vec{v}=k \lambda \vec{v}$
E. (i), (ii), (iii) and (iv)

So $k \lambda$ is an eigenvalue for $k A$ for any $k \in \mathbb{R}$.
(2) True by the IMT.
(3) Not True. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(4) Not True.
A is invertible since $\operatorname{det} A \neq 0$
A is not diagonalizable.

- A has only one eigenvalue $\lambda=2$ (twice).
- Eigenvectors)?

$$
\begin{aligned}
& (A-2 I) \vec{v}=\overrightarrow{0} . \\
\Rightarrow & {\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow x_{2}=0 }
\end{aligned}
$$

\Rightarrow Any eigenvector for $\lambda=2$ must be a scalar multiple of $\vec{V}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
In general, any matrix $A=\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]$ is not diagonalizable.
2. Spring 2019: \#16.

Keywords: graph of $\mathbf{x}^{\prime}=A \mathbf{x}$
Consider the dynamical system $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$. Then the origin is
A. an attractor
B. a reveller

It sufficies to check the eigenvalues for A :
C. a saddle point D. a spiral point

$$
|A-\lambda I|=0
$$

E. none of the above

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
1-\lambda & 1 \\
2 & 0-\lambda
\end{array}\right|=\lambda(\lambda-1)-2=0 \\
& \Rightarrow \lambda^{2}-\lambda-2=0 \\
& \Rightarrow(\lambda-2)(\lambda+1)=0 \\
& \Rightarrow \lambda=2 \text { and } \lambda=-1
\end{aligned}
$$

Trajectories for the System $\mathbf{x}^{\prime}=A \mathbf{x}:$

- attractor: A has distinct negative real eigenvalues.
- reveller: A has distinct positive real eigenvalues.
- saddle point: A has real eigenvalues of opposite sign.
- spiral point: A has complex conjugate eigenvalues with nonzero real parts.
- center: A has purely imaginary eigenvalues.

3. Spring 2019: \#18.

Keywords: subspaces of \mathbb{R}^{n}
Related questions: Fall 2018 \#10, Fall 2017 \#8, Fall 2012 \#7.
Which of the following subsets of the vector space \mathbb{R}^{3} are subspaces of \mathbb{R}^{3} ?
(i) The set of all vectors $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ with the property $2 x y z=0$.
(ii) The set of all the solutions of the equation $x-5 y+2 z=0$.
(iii) The set of all solutions for the system $A=\left[\begin{array}{ccc}2 & 3 & 2 \\ 5 & 2 & 8 \\ -1 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
(iv) The set of all the solutions of the equation $x+3 y=2 z+1$.
A. (ii) and (iii) only
B. (ii) and (iv) only
(1) Not.
C. (iii) and (iv) only
D. (ii), (iii) and (iv) only
E. (i), (ii), (iii) and (iv)

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { are in the subset }
$$

but $\vec{u}+\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not in the subset - .
(2) Yes, $x-5 y+2 z=0$ is a plane through the origin.
(3) Yes. It is NolA
(4) Not. Since $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in the set. In fact, it is a plane not passing the origin.

Let P_{3} be the real vector space of polynomials of degree less than or equal to 3 , together with the zero polynomial. Let W be the subspace of P_{3} consisting of all the polynomials $p(t) \in P_{3}$ satisfying $p(0)=p(1)$. What is the dimension of W ?
A. 0 . A general element in \mathbb{P}_{3} can be written as

$$
p(t)=a t^{3}+b t^{2}+c t+d
$$

- W is the subspace st.

$$
\begin{aligned}
& p(0)=p(1) \longleftarrow \\
\Rightarrow & a \cdot 0+b \cdot 0+c \cdot 0+d=a \cdot 1+b \cdot 1+c \cdot 1+d \\
\Rightarrow & a+b+c=0 \\
\Rightarrow & a=-b-c
\end{aligned}
$$

Thus any $p(t) \in W$ has to be in the form

$$
p(t)=(-b-c) t^{3}+\underline{b} t^{2}+\underline{c} t+\underline{d}
$$

ie. $p(t) \in W$ is determined by the values b, c, d. Thus it is 3 -dime.

In fact,

$$
p(t)=b\left(-t^{3}+t^{2}\right)+c\left(-t^{3}+t\right)+d \alpha 1 . t W .
$$

So any $p(t) \in W$ is spanned by $\left\{-t^{3}+t^{2},-t^{3}+t, 1\right\}$. which is a linearly independent set. and contains 3 elements. So $\operatorname{dim} W=3$.

Keywords: Rank Theorem, Row $A, \operatorname{NuI} A, \operatorname{Col} A$
Let A be a 5×7 real matrix such that the dimension of its column space is equal to 5 . Which of the following statements is true?
A. The dimension of the null space of A is equal to $0 \mathcal{X}$ C. True.
B. The columns of A are linearly independent χ
C. The rows of A are linearly independent V
D. The rank of A^{T} is equal to $7 \times \operatorname{rank} A^{T}=\operatorname{rank} A$

$$
\operatorname{dim} \text { Row } A=\operatorname{clim} \operatorname{col} A
$$

E. The dimension of the row space of A is 2χ

$$
=\operatorname{Rank} A
$$

$$
\operatorname{dim} \operatorname{col} A=\operatorname{rank} A=5
$$

$$
=5
$$

- Rank The: $\operatorname{rank} A+$ nullity $A=\#$ columns of A

$$
5+2=7
$$

$$
\Rightarrow \text { nullity } A=\operatorname{dim} \operatorname{Nu} \mid A=2
$$

6. (1) Spring 2018: \#20.

Keywords: Solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$
Related question: Fall 2018 \#18 from MA266
Let $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ be the solution of the following initial value problem:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3
\end{array}\right]
$$

Then $y(1)$ is equal to : Eigenvalue
A. $3 e^{6}$
B. $-3 e^{6}$
C. $3 e^{2}$
(D.) $-3 e^{2}$
E. $3 e^{6}-3 e^{2}$

$$
\begin{aligned}
& |A-\lambda I|=0 \\
\Rightarrow & \left|\begin{array}{cc}
4-\lambda & 2 \\
2 & 4-\lambda
\end{array}\right|=(\lambda-4)^{2}-4=0 \\
\Rightarrow & \lambda-4= \pm 2 \Rightarrow \lambda_{1}=2 \text { and } \lambda_{2}=6
\end{aligned}
$$

- Eigenvectors: For $\lambda_{i} 2\left[\begin{array}{ll|l}2 & 2 & 0 \\ 2 & 2 & 0\end{array}\right]$

Thus $\vec{V}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector for $\lambda_{1}=2$

$$
\text { For } \lambda_{2}=6 \quad\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
2 & -2 & 0
\end{array}\right]
$$

Thus $\vec{V}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for $\lambda_{2}=6$
Thus the general solution is

$$
\vec{x}(t)=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{6 \tau}
$$

The initial condition

$$
\begin{aligned}
\vec{x}(0)=\left[\begin{array}{c}
3 \\
-3
\end{array}\right] \\
\vec{x}(0)=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3
\end{array}\right] \\
\Rightarrow\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 3 } \\
{ - c _ { 1 } + c _ { 2 } = - 3 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
c_{1}=3 \\
c_{2}=0
\end{array}\right.\right.
\end{aligned}
$$

Thus

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{2 t}
$$

We need to compute $y(1)$.
Since $y(t)=-3 e^{2 t}$

$$
y(1)=-3 e^{2}
$$

6. (2) Fall 2018 \#18 from MA266

The real 2×2 matrix A has an eigenvalue $\lambda_{1}=3+2 i$ with the corresponding eigenvector $\mathbf{v}_{1}=\binom{1}{2 i}$. Then the general solution of the system of differential equations

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is $\mathbf{x}(t)=$
A. $C_{1} e^{3 t}\binom{\cos 2 t}{\sin 2 t}+C_{2} e^{3 t}\binom{\sin 2 t}{-\cos 2 t}$
B. $C_{1} e^{3 t}\binom{-2 \cos 2 t}{\sin 2 t}+C_{2} e^{3 t}\binom{\sin 2 t}{-2 \cos 2 t}$
C. $C_{1} e^{3 t}\binom{\cos 2 t}{-2 \sin 2 t}+C_{2} e^{3 t}\binom{\sin 2 t}{2 \cos 2 t}$
D. $C_{1} e^{3 t}\binom{\cos 2 t}{2 \sin 2 t}+C_{2} e^{3 t}\binom{-\sin 2 t}{2 \cos 2 t}$
E. $C_{1} e^{3 t}\binom{\cos 2 t}{\sin 2 t}+C_{2} e^{3 t}\binom{\sin 2 t}{2 \cos 2 t}$

From the given information,
We know.

$$
\begin{aligned}
& \vec{x}(t)=\overrightarrow{V_{1}} e^{\lambda_{1} t} \text { is a solution. } \\
& \Rightarrow \vec{x}(t)=\left[\begin{array}{l}
1 \\
2 i
\end{array}\right] e^{(3+2 i) t} \quad\left(e^{(x+i y) t}=e^{x t}(\cos y t+i \sin y t)\right) \\
& =\left[\begin{array}{l}
1 \\
2 i
\end{array}\right] e^{3 t}(\cos 2 t+i \sin 2 t) \\
& =e^{3 t}\left[\begin{array}{l}
\cos 2 t+i \sin 2 t \\
2 i \cos 2 t-2 \sin 2 t
\end{array}\right] \\
& =\underbrace{e^{3 t}\left[\begin{array}{l}
\cos 2 t \\
-2 \sin 2 t
\end{array}\right]}_{\vec{x}_{1}(t)}+\underbrace{e^{3 t}\left[\begin{array}{ccc}
\sin & 2 t \\
2 \cos 2 t
\end{array}\right]}_{\vec{x}_{2}(t)}
\end{aligned}
$$

7. Spring 2017: \#3.

Keywords: singular, similar, solution to $A \mathbf{x}=\mathbf{b}$
Let A, B be two 4×4 matrices. Which of the following statements is ALWAYS true?
A. If $A+B$ is singular, then either A or B is singular.
B. If $A B$ is symmetric, then $B A$ is also symmetric.
C. If A and B are similar matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.
D. If $A B=A C$, then $B=C$.
E. If $A \mathbf{x}=\mathbf{b}$ is consistent for some $\mathbf{b} \neq \mathbf{0}$, then A is non-singular.
A. False Recall singular \Leftrightarrow not invertible

$$
A=I_{4}, \quad B=-A=-I_{4}
$$

B. False Recall A is symmetric $\Leftrightarrow A^{\top}=A$

So $(A B)^{\top}=A B$

C. True
D. False
E. False.

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let $\mathbb{M}_{3 \times 3}$ be the space of 3×3 matrices. Let H be the subspace of $\mathbb{M}_{3 \times 3}$ consisting of all matrices
$A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ such that $A\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. What is the dimension of H ?
A. 1
B. 3
C. 6
D. 8
E. 9

$$
\left[\begin{array}{c}
a-2 b \\
d-2 e \\
g-2 h
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\Rightarrow\left\{\begin{array}{l}
a=2 b \\
d=2 e \\
g=2 h
\end{array} \quad \text { Thus } A \in H \text { has the form }\left[\begin{array}{lll}
2 b & b & c \\
2 e & \frac{e}{f} \\
2 h & h & i
\end{array}\right]\right.
$$

i.e. any $A \in H$ is determined by the 6 constants b, c, e, f, h, i.

So H is $6 \operatorname{dim}^{\prime} l$.
In fact, $\left[\begin{array}{ccc}2 b & b & c \\ 2 e & e & f \\ 2 h & h & i\end{array}\right]=b\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+c\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& +e\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+f\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& +h\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 0
\end{array}\right]+i\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

So any element in H is spanned by the 6 matrices appears on the RHS. They are also linearly independent. These are the basis for H.
9. Fall 2018: \#13.

Keywords: eigenvalue
Let $A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 3 & 5 & -2 & -2 \\ -2 & 3 & 3 & 5\end{array}\right]$. Which of the following values is a multiple eigenvalue of A ?

$$
\begin{aligned}
& \text { (A.) }-1 \\
& \text { B. }-2 \\
& \text { C. } 1 \\
& \text { D. } 2 \\
& \text { E. } 4 \\
& |A-\lambda I|=\left|\begin{array}{cccc}
2-\lambda & 0 & 0 & 0 \\
1 & -1-\lambda & 0 & 0 \\
3 & 5 & -2-\lambda & -2 \\
-2 & 3 & 3 & 5-\lambda
\end{array}\right| \\
& =(2-\lambda)\left|\begin{array}{ccc}
-1-\lambda & 0 & 0 \\
5 & -2-\lambda & -2 \\
3 & 3 & 5-\lambda
\end{array}\right| \\
& =(2-\lambda)(-1-\lambda)\left|\begin{array}{cc}
-2-\lambda & -2 \\
3 & 5-\lambda
\end{array}\right| \\
& =(2-\lambda)(-1-\lambda) \underbrace{[(\lambda+2)(\lambda-5)+6]}_{11}=0 \\
& \lambda^{2}-3 \lambda-10+6 \\
& =\lambda^{2}-3 \lambda-4 \\
& =(\lambda-4)(\lambda+1) \\
& \Rightarrow(2-\lambda)(+1+\lambda)(\lambda-4)(\lambda+1)=0
\end{aligned}
$$

$\Rightarrow \lambda=-1$ has multiplicity 2 .
10. Fall 2012: \#23.

Keywords: diagonalization
Let $A=\left[\begin{array}{cc}1 & 4 \\ 1 & -2\end{array}\right]$. For which matrix P is it true that $P^{-1} A P=D$, where D is a diagonal matrix?
A. $P=\left[\begin{array}{cc}1 & -1 \\ 4 & 1\end{array}\right] \quad$ Recall diagonalization of a matrix A :
(B.) $P=\left[\begin{array}{cc}4 & -1 \\ 1 & 1\end{array}\right]$

Find eigenvalues
C. $P=\left[\begin{array}{cc}-1 & 1 \\ 4 & 1\end{array}\right]$
D. $P=\left[\begin{array}{ll}4 & 1 \\ 1 & 1\end{array}\right]$

$$
\left|\begin{array}{cc}
1-\lambda & 4 \\
1 & -2-\lambda
\end{array}\right|=(\lambda+2)(\lambda-1)-4
$$

E. $\left.P=\left[\begin{array}{cc}1 / 3 & 2 / 3 \\ 1 / 6 & -1 / 6\end{array}\right] \quad \right\rvert\,=\lambda^{2}+\lambda-6=(\lambda+3)(\lambda-2)=0$

We need to choose $\Rightarrow \lambda=-3$ and $\lambda=2$.
P such that its. Find eigenvectors:
two columns are
at least a scalar multiple of the
\vec{v}_{1} and \vec{v}_{2} we founal $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\begin{aligned}
& \text { For } \lambda=2 \cdot\left[\begin{array}{cc|c}
-1 & 4 & 0 \\
1 & -4 & 0
\end{array}\right] \\
& \vec{V}_{2}=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
\end{aligned}
$$

We can take $P=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}-3 & 0 \\ 0 & 2\end{array}\right]$.

